

Solution 1: Factor

By the Rational Root Theorem, the possible rational roots of this polynomial are $\pm 2, \pm 1, \pm \frac{1}{2}$. We can test these few options and find that the polynomial factors into $(x+2)(2x-1)(x^2-6x-1) = 0$.

For $x = -2$ or $x = \frac{1}{2}$, we have $x - \frac{1}{x} = \boxed{-\frac{3}{2}}$. The quadratic formula on $(x^2 - 6x - 1) = 0$ gives us $x = 3 \pm \sqrt{10}$ for which $x - \frac{1}{x} = \boxed{6}$.

Solution 2: Divide by x^2

We have

$$\begin{aligned} 2x^4 - 9x^3 - 22x^2 + 9x + 2 &= x^2 \left(2x^2 - 9x - 22 + \frac{9}{x} + \frac{2}{x^2} \right) \\ &= x^2 \left[2 \left(x^2 + \frac{1}{x^2} \right) - 9 \left(x - \frac{1}{x} \right) - 22 \right] = 0. \end{aligned}$$

Quickly checking, we see that $x = 0$ is not a solution so we must have $2 \left(x^2 + \frac{1}{x^2} \right) - 9 \left(x - \frac{1}{x} \right) - 22 = 0$. Let $a = x - \frac{1}{x}$, which means $a^2 = x^2 + \frac{1}{x^2} - 2$ so we have

$$\begin{aligned} 2(a^2 + 2) - 9a - 22 &= 2a^2 - 9a - 18 \\ &= (2a + 3)(a - 6) = 0. \end{aligned}$$

This gives us $a = \boxed{-\frac{3}{2}, 6}$.